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Abstract

What is the possible order of a finite field? Do they all exist? Does irreducibles over Fp of a
given degree exists? How can we count the number of them? We will prove that a finite field must
have order pk for some prime p, and there exists such fields for all p and all non-negative integer k.

1 Introduction

Q1: When must an abelian be cyclic?
A1: When the order is square-free.
Q2: How to determine a ring of order n with characteristic n?
A2: Low Tech: The expansion of (1 + 1 + ...)(1 + 1 + ...) determines the multiplication; High Tech:
Consider the ring homomorphism from Z to R which is a surjection. R ∼= Z/nZ
Note that if the order n of a ring is square-free, then the additive abelian group must be cyclic, hence
characteristic is n, hence must be isomorphic to Z/nZ.

Recall the construction of a field of order 4: F2[X]�(X2 +X + 1). As X2 + X + 1 is an irreducible,

(X2 +X + 1) is a maximal ideal, hence quotient is a field with 22 = 4 elements.
Our plan: Find some irreducible of degree d (mod p), so we can build a finite field with pd elements. The
following sections will show that such an irreducible exists, and will find a nice formula for the number
of such fields.

2 Why

Why are we only looking for fields with pn elements?

Lemma 1. Let F be a finite field. Then char(F ) = p, where p is a prime.

Proof. char(F ) is finite since F is finite. If it is composite, then F is not an Integral Domain, but since
F is a finite field it must be an I.D., contradiction.

Definition 1. A field extension is a pair of fields K ≤ L, where K is a subring of L. We write this as
L/K. We can view L as an vector space over K. The degree of L/K, written as [L/K], is the degree of
L as a K−vector space.

Note: We require K to be a field rather than a ring because, a vector space must be over a field (so
that the property of vector space could work).

Corollary 1. Any finite field has pn elements, where p is its characteristic.

Proof. We can view a finite field F as a vector space over Fp, where p is the characteristic of F , Fp is a
copy of F consisting of {1, 1 + 1, ...}. Then F has pn elements for n = [F/Fp]

This answers the question at the start of this section.

Example 1. Suppose R is an I.D. with a subring F which is a field s.t. dimFR < ∞. Then R must
also be a field.

Proof. Let n = dimFR. For any r ∈ R/{0}, ∃ci ∈ F s.t.
∑n

0 cir
i = 0 and ci not all zero. If C0 6= 0,

then r(c1 + c2r + ...+ cnr
n−1)(−c0)−1 = 1. So r has an inverse. If c0 = 0, since R is an I.D. and r/ne0,

c1 + c2r + ...+ cnr
n−1 = 0. Repeat we are done.
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Lemma 2. Let R be an Integral Domain with a subgring F which is a field. We can view R as an
F−vector space as λr makes sense and satisfies the asioms. Assume R is a finite-dimensional F−vector
space, then R must be a field.

Proof. (c.f. to the proof that a finite I.D. must be a field) Choose α ∈ R/{0}, consider the homomorphism

φ : R→ R

r → αr

φ is clearly a linear map. φ is injective as R is an I.D.. By rank-nullity theorem, φ must be surjective as
well. Thus R must be a field as there’s an inverse to each non-zero element.

3 If and Only If

Clearly if f is irreducible over Fp of degree n, then we get a field of order pn, i.e. Fp/(f). Is the converse
true?

Lemma 3. If F is a finite field, then the group F× (under multiplication) must be cyclic.

Proof. Since F is a field, Xn − 1 has no larger than n roots.
By classification of finite abelian groups, the multiplication group G ∼= Cn1

× ... × Cnk
. If there’s a

repeated factor Cm × Cm, then there are m2 solutions to Xm − 1, which is a contradiction. Hence G is
cyclic.

Proposition 1. A field of order pn exists if and only if a degree n irreducible polynomial exists over Fp.

Proof. (⇒) We have Fp/F . By lemma 3, we can choose β ∈ F s.t. all powers of β cover F×. Consider

ψ : Fp[X]→ F

f(X)→ f(β)

It is clearly a surjective homomorphism. Moreover, ker(ψ) = (f) for the minimal polynomial f . Thus
Fp[X]/(f) ∼= F is a field. So (f) is maximal hence f is irreducible. Since pdeg(f) = |F | = pn, we know
that f has degree n.
(⇐) Trivial. Fp/(f).

This answers the question at the start of this section.

4 The Theorem that Kills It

Consider the equation Xpn−X. This polynomial has no repeated roots since it exactly covers all roots—
if we assume a field with pn elements exists. But of course we cannot assume this condition. How can
we proceed?

Lemma 4. f is a polynomial with a repeated root r if and only if f(r) = f ′(r) = 0.

Proof. (⇒)It’s trivial if we write f(x) = (x− r)2h(x).
(⇐) Also trivial.

Now note that Xpn −X has derivative −1 over Fp. So it has no double roots.
It’s time for our big theorem to show up.

Theorem 1. Given a field F and a polynomial f(X) ∈ F [X], there exists a larger field (field extension)
where f has all its roots.

Note: the smallest such field is called the splitting field. Indeed, one can further show that the
splitting field is unique up to isomorphism. This is not included in this article, and to show this, you’d
better take a course in Galois Theory.

Proof. Set L = F .
1. If a root α of f is in L, replace f by f/(x− α)
2. Let g be an irreducible factor of f . Replace L by L[X]/g. Turn to step 1.
Now step 2 ensures step 1 can proceed, and when the degree of f decreases to zero we get a splitting
field.
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It looks good— we can prove what we want now.

Theorem 2. The finite field of order pk exists, for all prime p and all non-negative integer k.

Proof. This is a direct corollary of the previous theorem. By Theorem 1, there exists a field K where
Xpn −X has all its roots over Fp. Let F = {β : βpn − β = 0}. Then F is a field with pn elements.

Thus we also have the irreducible polynomial over Fp exists for any degree.
Hooray!

5 Counting

How can we count the number of irreducible polynomials in Fp[X] of given degree?

Lemma 5. Fpd ≤ Fpn if and only if d|n, where we write Fpn to be a field of pn elements.

Proof. Note that Xpd −X|Xpn −X if and only if d|n, and the elements in Fpn are precisely the roots of
Xpn −X.

It might sound a bit confusing, but we have:

Proposition 2. f is a (monic degree one) irreducible factor of Xpn −X over Fpn if and only if f is a
monic irreducible polynomial whose degree divides n over Fp.

Proof. (⇐) If f is an irreducible factor of Xpn −X over Fpn , its splitting field Fp[X]/(f) is contained in
Fpn . (Consider this in the construction of splitting field). So d|n.
(⇒) If f is a monic irreducible polynomial whose degree divides n over Fp, then the splitting field of f
must be contained in Fpn by lemma 5. The result follows.

Thus we have:

Corollary 2. Xpn −X is the product of all irreducibles of degree d s.t. d|n. i.e.

Xpn

−X =
∏

d|n, f monic irreducible of degree d

f

Write Cd for the number of monic irreducibles of degree d over Fp. We have

pn = deg(Xpn

−X) = deg(
∏
d|n

f) =
∑
d|n

dCd

We can solve this by using Mobius Inversion Formula, given that lower degree Cd is derived.

Example 2. Calculate Cd for d = 2 over F2:
List all quadratics mod p: X2 + bX + C. Write down all (X − r)(X − s), eleminates from the list.
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